Lagrangian and Hamiltonian Formalism for Constrained Variational Problems
نویسنده
چکیده
We consider solutions of Lagrangian variational problems with linear constraints on the derivative. These solutions are given by curves γ in a differentiable manifold M that are everywhere tangent to a smooth distribution D on M ; such curves are called horizontal. We study the manifold structure of the set ΩP,Q(M,D) of horizontal curves that join two submanifolds P and Q of M . We consider an action functional L defined on ΩP,Q(M,D) associated to a time-dependent Lagrangian defined on D. If the Lagrangian satisfies a suitable hyper-regularity assumption, it is shown how to construct an associated degenerate Hamiltonian H on TM using a general notion of Legendre transform for maps on vector bundles. We prove that the solutions of the Hamilton equations of H are precisely the critical points of L.
منابع مشابه
Constrained systems and analytical mechanics in spaces with torsion Sergei
A system with anholonomic constraints where the trajectories of physical degrees of freedom are autoparallels on a manifold equipped with a general Cartan connection is discussed. A variational principle for the autoparallel trajectories is derived from the d’Alambert-Lagrange principle for anholonomic constrained systems. A geometrical (coordinate-independent) formulation of the variational pr...
متن کاملClassical Field Theory on Lie Algebroids: Multisymplectic Formalism
The jet formalism for Classical Field theories is extended to the setting of Lie algebroids. We define the analog of the concept of jet of a section of a bundle and we study some of the geometric structures of the jet manifold. When a Lagrangian function is given, we find the equations of motion in terms of a Cartan form canonically associated to the Lagrangian. The Hamiltonian formalism is als...
متن کاملHydrodynamics for an Ideal Fluid: Hamiltonian Formalism and Liouville-equation
Clebsch 1'2) was the first to derive, in 1859, the hydrodynamic equations for an ideal fluid from a variational principle for Euler coordinates. His derivation was, however, restricted to the case of an incompressible fluid. Later Bateman 3) showed that the analysis of Clebsch also applies to compressible fluids if the pressure is a function of density alone. Finally, in 1968, Seliger and Whith...
متن کاملConserved Quantities from the Equations of Motion
We present an alternative field theoretical approach to the definition of conserved quantities, based directly on the field equations content of a Lagrangian theory (in the standard framework of the Calculus of Variations in jet bundles). The contraction of the Euler–Lagrange equations with Lie derivatives of the dynamical fields allows one to derive a variational Lagrangian for any given set o...
متن کاملVariational Calculations for the Relativistic Interacting Fermion System at Finite Temperature: Application to Liquid 3He
In this paper, at first we have formulated the lowest order constrained variational method for the relativistic case of an interacting fermion system at finite temperature. Then we have used this formalism to calculate some thermodynamic properties of liquid in the relativistic regime. The results show that the difference between total energies of relativistic and non-relativistic cases of liqu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008